
THE ROAD TO 2 MILLION
WEB SOCKET

CONNECTIONS WITH
PHOENIX

BLOG POST
http://www.phoenixframework.org/blog/the-road-to-2-million-websocket-connections

http://www.phoenixframework.org/blog/the-road-to-2-million-websocket-connections

GARY RENNIE
Gazler @TheGazler

Why?
How? (Beware: contains XML)
Results
Future

TALK FORMAT

WhatsApp used as a reference for all Phoenix presentations
Lots of Phoenix HTTP benchmarks, 0 for persistent connections

WHY?

https://blog.whatsapp.com/196/1-million-is-so-2011
https://github.com/mroth/phoenix-showdown

http://www.littlelines.com/blog/2014/07/08/elixir-vs-ruby-showdown-phoenix-vs-rails/

https://blog.whatsapp.com/196/1-million-is-so-2011
https://github.com/mroth/phoenix-showdown
http://www.littlelines.com/blog/2014/07/08/elixir-vs-ruby-showdown-phoenix-vs-rails/

Uses Web Socket protocol
Connections have to stay open
Can't recycle connections
Increased memory usage
Hard limit on connections per machine (~64k however adding

additional ip addresses/using di�erent ports can �x this)

WHAT MAKES BENCHMARKING WEB SOCKETS DIFFERENT?

CHAT APPLICATION

https://github.com/chrismccord/phoenix_chat_example

https://github.com/chrismccord/phoenix_chat_example

diff --git a/web/channels/room_channel.ex b/web/channels/room_channel.ex

index bc92759..66ead5c 100644

--- a/web/channels/room_channel.ex

+++ b/web/channels/room_channel.ex

@@ -14,8 +14,6 @@ defmodule Chat.RoomChannel do

 """

 def join("rooms:lobby", message, socket) do

 Process.flag(:trap_exit, true)

- :timer.send_interval(5000, :ping)

- send(self, {:after_join, message})

 {:ok, socket}

 end

TSUNG
An open-source multi-protocol distributed load testing tool
Written in Erlang
Started in 2001 as Idx-Tsunami
Supports Web Sockets (As of version 1.5)
Supports multiple machines
Produces pretty charts (web dashboard as of 1.6)

https://github.com/processone/tsung

https://github.com/processone/tsung

TSUNG CONFIG
<?xml version="1.0"?>

<!DOCTYPE tsung SYSTEM "/user/share/tsung/tsung-1.0.dtd">

<tsung loglevel="debug" version="1.0">

 <clients></clients>

 <servers></servers>

 <load></load>

 <sessions></sessions>

</tsung>

Machine running with the con�g is the controller
Other machines are clients (the controller can also be a client)

TSUNG CLIENTS
 <clients>

 <client host="phoenix1" weight="1" cpu="4" use_controller_vm="false" maxusers="60000" />

 <client host="phoenix2" weight="2" cpu="4" use_controller_vm="false" maxusers="60000">

 <ip value="10.9.195.12"></ip>

 <ip value="10.9.195.13"></ip>

 </client>

 <client host="phoenix3" weight="1" cpu="4" use_controller_vm="false" maxusers="60000" />

 </clients>

One client per machine
Keep maxusers below machine limit
Can set a weight on the machines (load ratio)
Can set multiple virtual IP addresses (we didn't use this)
use_controller_vm="false" - don't share Erlang VM

TSUNG SERVERS
<servers>

 <server host="server1" port="4000" type="tcp" weight="4"></server>

 <server host="server2" port="4000" type="tcp" weight="1"></server>

</servers>

Can set multiple servers (we only used 1)
Can set a weight on the machines (load ratio)
Can set a connection type (tcp, ssl, udp, websocket)
We actually used the tcp type instead of websocket as

websocket didn't stay open

TSUNG LOAD
<load duration="1" unit="hour">

 <arrivalphase phase="1" duration="10000" unit="second">

 <users maxnumber="100000" arrivalrate="1000" unit="second" />

 </arrivalphase>

</load>

Can set multiple phases (we used 1)
Phases have a duration
Total load can have a duration (max just under 50 days!)
Phases can be looped
We set duration high and manually terminated
Arrival rate is the number of connections arriving

TSUNG SESSIONS
<sessions>

 <session name="websocket" probability="100" type="ts_websocket">

 <request><websocket type="connect" path="/socket/websocket"></websocket></request>

 <request subst="true">

 <websocket type="message">{"topic":"rooms:lobby", "event":"phx_join", "payload":

 {"user":"%%ts_user_server:get_unique_id%%"}, "ref":"1"}</websocket>

 </request>

 <for var="i" from="1" to="1000" incr="1"><thinktime value="30"/></for>

 </session>

</sessions>

How users interact with the application (we connect and wait)
Can use Erlang terms (%%ts_user_server:get_unique_id%%)
Can use di�erent request types (websocket, http)
Di�erent probabilities per session

tsung -f config.xml start
1 server Rackspace I/O v1
15GB RAM, 4 cores
2 clients as above

THE FIRST RUN OF TSUNG

WTF?!?!

SERVER CONFIG
ulimit -n 2000000

Make sure it is set after restarts!

FIRST OPTIMIZATION
061c69b Only rely on ETS tables inside local (5 months ago, José Valim)

 lib/phoenix/pubsub/local.ex | 83 ++++++++++++++---

 1 file changed, 14 insertions(+), 69 deletions(-)

Remove local HashDict of PIDs
Use topics ETS tables to �nd subscribers (PIDs)

USING OBSERVER

SECOND OPTIMIZATION
7b252f4 Remove uneeded heartbeat since cowboy handles timeouts (5 months ago, Chris McCord)

lib/phoenix/transports/websocket.ex | 30 ++----------------------------

test/phoenix/integration/websocket_test.exs | 11 ++---------

test/phoenix/socket_test.exs | 2 +-

3 files changed, 5 insertions(+), 38 deletions(-)

:timer.send_after is expensive
Remove 30s heartbeat
Cowboy handles heartbeat

1 server Rackspace I/O v1 - 15GB RAM, 4 cores
2 clients as above
1 client - Rackspace OnMetal 128GB RAM, 40 cores
5 client - Rackspace general purpose 4GB RAM, 4 cores

MACHINE SPECS

15GB - 4 cores 128GB - 40 cores

THIRD OPTIMIZATION
bad6b11 Change PG2 ETS from bag to duplicate_bag to improve insert performance

for elements with same key (5 months ago, Gabi Zuniga)

lib/phoenix/pubsub/local.ex | 2 +-

1 file changed, 1 insertion(+), 1 deletion(-)

THIRD OPTIMIZATION
- ̂local = :ets.new(local, [:bag, :named_table, :public,

+ ̂local = :ets.new(local, [:duplicate_bag, :named_table, :public,

Know your ETS types!
Duplicates don't matter since each subscriber unique
10x arrival rate increase

PROBLEMS
All low hanging fruit gone (as far as we know!)
Client crash was resulting in 60k down messages
Server was timing out on connections
Broadcasts taking 5 seconds to send to all users
We tried parallelizing broadcasts but still got timeouts

FOURTH OPTIMIZATION
8eb9dfa Add random local pool and sharded subscribers (5 months ago, Chris McCord)

lib/phoenix/pubsub/local.ex | 99 ++---

lib/phoenix/pubsub/pg2.ex | 15 ++++++++++-----

lib/phoenix/pubsub/pg2_server.ex | 10 +++++-----

3 files changed, 73 insertions(+), 51 deletions(-)

First time we added code!
Sharding with a pool of servers and ETS tables
Shard based on PID
Use :erlang.phash2(pid, shard_size)
Con�gure with `pubsub: [pool_size: 40]`
Able to maintain 1-2s broadcasts

HOW TO OPTIMIZE
Be José Valim
Use the tools available to you (observer)
Isolate the bottlenecks
Know your data types (ETS)
Use a pool if a process is bottlenecked

SO DO THE
CONNECTIONS DO

ANYTHING?
We have a chat room with 2 million people

TSUNG COMMON ISSUES
Everything requires a host name (clients and controller)
If /etc/hosts names don't match then you will get an error
Needs to be correct for every client
SSH keys need to be set up from the controller to each client
ulimit needs to be set

PHOENIX
CONFIGURATION

Use production environment
Disable logging

EASIEST WAY TO DO THIS
AT SCALE

Create a server, install erlang, tsung, etc.
Create SSH key and add it to ~.ssh/.authorized_keys
Set up own hostname (tsung-controller or something)
Set ulimit in `/etc/security/limits`
Create an image
Spawn new servers from that image

WHAT NEXT?
Benchmarking is expensive!
multi-node
Chat room with messages being sent periodically
Benchmarking more "chat rooms" on a single server
Use IP aliasing to make testing require fewer machines
Automate the tests for each release (both websocket and HTTP)

THANKS FOR LISTENING

